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Abstract

Session primitives and types provide a flexible programming style for structured interaction, and are used
to statically check the safe and consistent composition of protocols in communication-centric distributed
software. Unfortunately authors working on session types have recently realised that some of the previously
published systems fail to satisfy the basic theorems of Subject Reduction and Type Safety.
This report discusses the issues involved in higher-order session communication, presents a formulation of
the recursive types as well as proofs of the Subject Reduction and Type Safety Theorems of the original
session typing system by Honda-Vasconcelos-Kubo in ESOP’98. It also proposes a variant which allows a
more liberal higher-order session communication, based on an idea of Gay and Hole.
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1 Introduction

Session primitives and types provide a flexible programming style for structural
interaction, and are used to statically check the safe and consistent composition
of protocols in communication-centric distributed software. They have been stud-
ied for the π-calculus [2,11,12,13,17,20,23], Ambients [6], CORBA interfaces [21],
multi-threaded functional languages [15,23,24], Web Description Languages [3,4,14],
and distributed [8] and multi-threaded Java [7] and, at the industry level, WC3-
CDL [5,25] and pi4Tech [16].
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This paper reports on recent active discussions on the two fundamental theo-
rems, Subject Reduction and Type Safety, among the authors working on session
types. In the presence of higher-order session communication, session instantiation
dynamically changes the structure of sessions, so that it becomes non-trivial to pre-
serve typability. Unfortunately the aforementioned authors have recently realised
that some of the previous systems fail to satisfy these basic theorems. Interest-
ingly, the subtlety of type preservation is related to a treatment of communication
channels in the rewriting rules of the π-calculus.

After discussing the issues involved in higher-order session communication, this
report also proposes a session typing system which allows a more liberal higher-
order session communication, based on the work of Gay and Hole [12] and already
used in [23]. The full proofs of the two theorems are firstly given in this report,
which also clarifies some definitions absent in [13]. The motivation to why the
present authors should redo the proofs nine years after is the discovery of a subtle
counterexample to the results in some works on session types published after the
work under consideration, although not to results of the original system [13]. We
explain the problem in detail in Section 3.

The technical contributions of this report include: the formulation of recursive
types, proofs for the Subject Reduction and Type Safety Theorems in the original
session typing system by Honda-Vasconcelos-Kubo [13], as well as the presentation
of a more liberal system and the corresponding proofs.

The outline of the paper is simple. The next section revisits the ESOP’98
system, presenting proofs for the above mentioned results. Section 3 presents the
more liberal system. Section 4 concludes the paper.

2 The Honda-Vasconcelos-Kubo Session Typing Sys-
tem

Honda-Vasconcelos-Kubo’s session typing system in ESOP’98 [13] is an extension of
the first session typing system [20] that allows higher-order session communication.
We first informally review the syntax, operational semantics and typing system of
the ESOP system. We then state and prove the main theorems, Subject Reduction
and Type Safety. Detailed examples and explanations of the language and typing
system can be found in reference [13].

2.1 Syntax and Operational Semantics

A session is a series of reciprocal interactions between two parties, possibly with
branching and recursion, and serves as a unit of abstraction for describing interac-
tion. Communications belonging to a session are performed via a port, specific to
that session, called a channel. A fresh channel is generated when initiating each
session, for the use in safe communications.

We use the following base sets: names, ranged over by a, b, x, y, z . . . ; channels,
ranged over by k, k′; constants (including names, integers and booleans), ranged
over by c, c′, . . . ; labels, ranged over by l, l′, . . . ; and process variables, ranged over
by X, Y, . . . Letters u, u′, . . . denote names and channels together. Then processes,
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P ::= request a(k) in P session request
| accept a(k) in P session acceptance
| k![ẽ];P data sending
| k?(x̃) in P data reception
| k � l;P label selection
| k � {l1 : P1[] · · · []ln : Pn} label branching
| throw k[k′];P channel sending
| catch k(k′) in P channel reception
| if e then P else Q conditional branch
| P | Q parallel composition
| inact inaction
| (νu)P name/channel hiding
| def D in P recursion

| X[ẽk̃] process variables
e ::= c constant

| e + e′ | e− e′ | e× e | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn declaration for recursion

Fig. 1. Syntax

ranged over by P,Q . . . , and expressions, ranged over by e, e′, . . . are given by the
grammar in Figure 1. The typing system in Figure 6 makes sure that, in process
X[ẽk̃], the channels in k̃ are pairwise distinct.

P ≡ Q if P ≡α Q

P | inact ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
(νu)P | Q ≡ (νu)(P | Q) if u 6∈ fu(Q)

(νu)inact ≡ inact

def D in inact ≡ inact

(νu)def D in P ≡ def D in (νu)P if u 6∈ fu(D)
(def D in P ) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P ) ≡ def D and D′ in P if dpv(D) ∩ dpv(D′) = ∅.

Fig. 2. Structural Congruence

The bindings for names are k?(x̃) in P , X(x̃k̃) = P , and (νa)P ; those for
channels are request a(k) in P, accept a(k) in P, catch k(k′) in P,X(x̃k̃) = P ,
and (νk)P ; and that for process variables are def D in P . The derived notions of
bound and free identifiers, alpha equivalence ≡α, and substitution are standard. For
P a process, fpv(P ) denotes the set of free process variables, fn(P ) denotes the set of
free names, and fc(P ) the set of free channels. We also define fu(P ) = fn(P )∪ fc(P ).
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(accept a(k) in P1) | (request a(k) in P2) → (νk)(P1 | P2) [Link]
(k![ẽ];P1) | (k?(x̃) in P2) → P1 | P2[c̃/x̃] (ẽ ↓ c̃) [Com]

(k � li;P ) | (k � {l1 : P1[] · · · []ln : Pn}) → P | Pi (1 ≤ i ≤ n) [Label]
(throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2 [Pass]

if e then P1 else P2 → P1 (e ↓ true) [If1]
if e then P1 else P2 → P2 (e ↓ false) [If2]

def D in (X[ẽk̃] | Q) → def D in (P [c̃/x̃] | Q) (ẽ ↓ c̃, X(x̃k̃) = P ∈ D) [Def]
P → P ′ ⇒ (νu)P → (νu)P ′ [Scop]
P → P ′ ⇒ P | Q → P ′ | Q [Par]

P → P ′ ⇒ def D in P → def D in P ′ [Defin]
P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q ⇒ P → Q [Str]

Fig. 3. Reduction

We also need to talk about the set of process variables introduced in declarations
dpv(X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn) = {X1, . . . , Xn}.

Structural congruence is the smallest congruence relation on processes that in-
clude the equations in Figure 2. The operational semantics is given by the reduction
relation, denoted P → Q, the smallest relation on processes generated by the rules
in Figure 3, where e ↓ c says that expression e evaluates to constant c.

Rule [Link] establishes a new session between the server accept a(k) in P1 and
the client request a(k) in P2 via shared name a. Rule [Com] transmits values
between the client and the server at the private channel so that determinacy of
value delivery is ensured among the two parties. Rule [Pass] is the key rule to
allow higher-order session communication, i.e. session channel send and receive,
with which various protocols are expressed, allowing complex nested structured
communications. To show the difference between channels and names, for example,

accept a(k) in P1 | accept a(k) in P2 | request a(k) in Q

is accepted by the type system, while

throw k[k′];P1 | throw k[k′];P2 | catch k(k′) in Q

is prohibited since two senders at k appear in context at the same time.

Relationship with the Rewriting Rules of the π-Calculus
The essence of rule [Pass] is related to a “trick” in a rule of the operational

semantics of a variant of the π-calculus, called the πI-calculus in the literature [19].
This calculus restricts name passing to bound (private) name passing. Syntactically
it restricts outputs to processes to the form:

(νỹ)(x〈ỹ〉 | P ) with ỹ pairwise distinct (1)
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Sort S ::= nat | bool | 〈α, α〉
Type α ::= ?[S̃];α | ?[α];β | &{l1 : α1, . . . , ln : αn} | end | ⊥ |

![S̃];α | ![α];β | ⊕{l1 : α1, . . . , ln : αn} | t | µt.α

Fig. 4. The syntax of types

where ỹ = y1 . . . yn denotes a potentially empty vector, | denotes parallel composi-
tion, and x〈ṽ〉 is an asynchronous output (or a message). We write the process in
(1) as x(ỹ).P . The dynamics has the following form by the restriction to the bound
output.

x(ỹ).P | x(ỹ).Q → (νỹ)(P | Q) (2)

Note that ỹ, present both in the input and in the output, indicates that α-conversion
is implicitly performed ahead of communication. One can easily observe a similarity
between this rule, and rules [Link] and [Pass]: channel k is always freshly generated
in rule [Link] and channel k′ in rule [Pass] is already created and bound at a previous
interaction. Hence no substitution is performed in (2), [Link] or [Pass].

2.2 Type Discipline

Structured communication-based programming allows a clear description of com-
plex interaction structures beyond conventional communication primitives. The
more complex the interaction becomes, the more difficult it is to capture the whole
interactive behaviour and to write correct programs. The session type discipline
offers a simple static checking framework to guarantee the correctness of commu-
nication patterns in such situations. It guarantees that well-typed programs are
exempt from incompatibility in interaction patterns.

Types
Given a set of type variables ranged over by t, t′, . . . , the grammar in Figure 4

defines the set S of sorts ranged over by S, S′, . . ., and the set T of types ranged
over by α, β, . . . .

The type ?[S̃];α represents the behaviour of first inputting values of sorts S̃,
then performing the actions prescribed by type α; type ?[α];β represents a sim-
ilar behaviour, which starts with channel input (catch) instead; types ![S̃];α and
![α];β are the dual of ?[S̃];α and ![α];β, sending values instead of receiving. Type
&{l1 : α1, . . . , ln : αn} describes a branching behaviour: it waits with n options, and
behave as type αi if i-th action is selected (external choice); type⊕{l1 : α1, . . . , ln : αn}
then represents the behaviour which would select one of li and then behaves as αi,
according to the selected li (internal choice). Type end represents inaction, acting
as the unit of sequential composition; µt.α denotes a recursive behaviour, repre-
senting the behaviour that starts by doing α and, when t is encountered, recurs to
α again; and finally ⊥ is a specific type indicating that no further interaction is
possible at a given name.

For a type α in which ⊥ does not occur, we define α, the co-type (or dual) of α,
by exchanging ! and ?, and & and ⊕. The inductive definition is in Figure 5.
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![S̃];α =?[S̃];α ⊕{li : αi}i∈I = &{li : αi}i∈I ![α];β =?[α];β

?[S̃];α =![S̃];α &{li : αi}i∈I = ⊕{li : αi}i∈I ?[α];β =![α];β
end = end µt.α = µt.α t = t

Fig. 5. The co-type of a type

Recursive Types
One of the contributions of the present abstract is a precise definition and the

fixed point theorem on recursive types which were omitted from the original paper.
We follow the standard co-inductive treatment of recursive types [18]. The µ op-
erator is a binder, giving rise, in the standard way, to notions of bound and free
variables and alpha-equivalence. We do not distinguish between alpha-convertible
types. Furthermore, we take an equi-recursive view of types, not distinguishing
between a type µt.α and its unfolding α[µt.α/t]. We are interested on contractive
types only.

Definition 2.1 (Contractive) A type is contractive if for each of its sub-expressions
µt.µt1 . . . µtn.α, the body α is not t.

Henceforth we assume all types to be contractive.

Definition 2.2 (Type equivalence) Two types α and β are said to be equivalent
if the pair (α, β) is in the largest fix point of the monotone function F : P(T × T ) →
P(T × T ) defined by:

F (R) = {(end, end), (⊥,⊥)}
∪ {(?[S̃];α, ?[S̃];β) | (α, β) ∈ R}
∪ {(![S̃];α, ![S̃];β) | (α, β) ∈ R}
∪ {(?[α];β, ?[α′];β′) | (α, α′), (β, β′) ∈ R}
∪ {(![α];β, ![α′];β′) | (α, α′), (β, β′) ∈ R}
∪ {(⊕{li : αi}i∈I ,⊕{li : βi}i∈I) | (αi, βi) ∈ R,∀i ∈ I}
∪ {(&{li : αi}i∈I ,&{li : βi}i∈I) | (αi, βi) ∈ R,∀i ∈ I}
∪ {(µt.α, β) | (α[µt.α/t], β) ∈ R}
∪ {(α, µt.β) | (α, β[µt.β/t]) ∈ R}

Theorem 2.3 The largest fix point of function F is an equivalence relation.

Proof. For each of the three cases (reflexivity, symmetry, transitivity) we fol-
low [18], Theorems 21.3.6–7. Take symmetry. A relation R is symmetric if it is
closed under the monotone function Sym(R) = {(α, β}) | (β, α) ∈ R}. We start by
noting that (cf. [18], Theorem 21.3.6):

Sym(F (R)) ⊆ F (Sym(R)) implies that the largest fixed point of F is symmetric.

We then show that Sym(F (R)) ⊆ F (Sym(R)). Let (α, β) ∈ Sym(F (R)). By
definition of Sym, there exists (β, α) ∈ F (R). Our goal is to show that (β, α) ∈
F (Sym(R)). Consider all possible shapes of α. We focus on two cases; the remaining
are similar.
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Case α = end. Since (β, α) ∈ F (R), the definition of F implies that β = end or β =
µt.γ with (α, γ[β/t]) ∈ R. In the first case, notice that (end, end) ∈ F (R) for any R,
in particular for F (Sym(R)). In the second case, we know that (γ[β/t], α) ∈ Sym(R)
(by the definition of Sym), hence that (β, α) ∈ F (Sym(R)) (by the definition of F ).
Case α = &{li : αi}i∈I . Since (β, α) ∈ F (R), the definition of F implies that
β = &{li : βi}i∈I or β = µt.γ with (α, γ[β/t]) ∈ R. In the first case, by the definition
of Sym, we have (βi, αi) ∈ Sym(R) for all i ∈ I, hence (&{li : βi}i∈I ,&{li : αi}i∈I) ∈
F (Sym(R)). In the second case proceed as above.

Henceforth types are understood up to type equivalence, so that, for example,
in a typing derivation, types µt.α and α[µt.α/t] can be used interchangeably. Due
to the presence of record structures in the syntax of types (⊕{l1 : α1, . . . , ln : αn},
&{l1 : α1, . . . , ln : αn}), we do not pursue an interpretation of types as regular infinite
trees (the interested reader may refer to [22] for such an interpretation).

Typing System
A sorting (resp. a typing, resp. a basis) is a finite partial map from names to

sorts (resp. from channels to types, resp. from variables to sequences of sorts and
types). We let Γ,Γ′, . . . (resp. ∆,∆′, . . ., resp. Θ,Θ′, . . .) range over sortings (resp.
typings, resp. bases).

Definition 2.4 (Type algebra) Typings ∆0 and ∆1 are compatible, written ∆0 �
∆1, if ∆0(k) = ∆1(k) for all k ∈ dom(∆0) ∩ dom(∆1). When ∆0 � ∆1, the com-
position of ∆0 and ∆1, written ∆0 ◦∆1, is given as a typing such that (∆0 ◦∆1)(k)
is (1) ⊥, if k ∈ dom(∆0) ∩ dom(∆1); (2) ∆i(k), if k ∈ dom(∆i) \ dom(∆i+1 mod 2)
for i ∈ {0, 1}; and (3) undefined otherwise.

We write ∆ · k : α when k 6∈ dom(∆). This notation is then extended to ∆ ·∆′.
Also, Θ \ x denotes the result of taking off x : Θ(x) from Θ. Similarly for Γ \ a and
for ∆ \ k.

Typing judgement are of the form Θ;Γ ` P . ∆ which reads: “under the en-
vironment Θ; Γ, process P has typing ∆”. The typing system is defined by the
axioms and rules in Figure 6. We call a typing completed when it contains only end
types [12]. Rules [Var] and [Inact] make sure that the leaves in every derivation
tree contain complete typings only (then, ⊥ may be inserted via rule [Bot]). We
also simplify the recursive definition to the single case; the extension to the multiple
recursion is obvious.

2.3 Changes from the ESOP’98 system

For the syntax, we added x, y, z, . . . to the category of names, thus incorporating
the set of variables into that of names. We have made clear the notions of bindings
for the various identifiers in the calculus. For the structural congruence relation, we
have replaced fpv(D) by dpv(D), the set of variables introduced in declaration D,
and we added rule def D in inact ≡ inact for flexibility. For types, we changed
the syntax from 1 to end, from ↑ to !, and from ↓ to ?, following [12]. We have
also added more accurate definitions for recursive types (Definitions 2.1 and 2.2)
for clarification. For the typing system, we added [NameI], [Nat], [Bool], [Sum] and
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Γ · a : S ` a . S Γ ` 1 . nat Γ ` true, false . bool
Γ ` ei . nat

Γ ` e1 + e2 . nat
[NameI],[Nat],[Bool],[Sum]

Θ; Γ ` P . ∆ · k : end
Θ;Γ ` P . ∆ · k : ⊥

∆ completed
Θ; Γ ` inact . ∆

[Bot],[Inact]

Γ ` a . 〈α, α〉 Θ;Γ ` P . ∆ · k : α

Θ;Γ ` accept a(k) in P . ∆
[Acc]

Γ ` a . 〈α, α〉 Θ;Γ ` P . ∆ · k : α

Θ;Γ ` request a(k) in P . ∆
[Req]

Γ ` ẽ . S̃ Θ;Γ ` P . ∆ · k : α

Θ;Γ ` k![ẽ];P . ∆ · k : ![S̃];α
[Send]

Θ; Γ · x̃ : S̃ ` P . ∆ · k : α

Θ;Γ ` k?(x̃) in P . ∆ · k : ?[S̃];α
[Rcv]

Θ; Γ ` P1 . ∆ · k : α1 · · · Θ;Γ ` Pn . ∆ · k : αn

Θ;Γ ` k � {l1 : P1[] · · · []ln : Pn} . ∆ · k : &{l1 : α1, . . . , ln : αn}
[Br]

Θ; Γ ` P . ∆ · k : αj

Θ;Γ ` k � lj ;P . ∆ · k : ⊕ {l1 : α1, . . . , ln : αn}
(1 ≤ j ≤ n) [Sel]

Θ; Γ ` P . ∆ · k : β

Θ;Γ ` throw k[k′];P . ∆ · k : ![α];β · k′ : α
[Thr]

Θ; Γ ` P . ∆ · k : β · k′ : α

Θ;Γ ` catch k(k′) in P . ∆ · k : ?[α];β
[Cat]

Θ; Γ ` P . ∆ Θ; Γ ` Q . ∆′

Θ;Γ ` P | Q . ∆ ◦∆′ (∆ � ∆′) [Conc]

Γ ` e . bool Θ;Γ ` P . ∆ Θ; Γ ` Q . ∆
Θ;Γ ` if e then P else Q . ∆

[If]

Θ; Γ · a : S ` P . ∆
Θ;Γ ` (νa)P . ∆

Θ;Γ ` P . ∆ · k : ⊥
Θ;Γ ` (νk)P . ∆

[NRes],[CRes]

∆ completed Γ ` ẽ . S̃

Θ ·X : S̃α̃; Γ ` X[ẽk̃] . ∆ · k̃ : α̃
[Var]

Θ ·X : S̃α̃; Γ · x̃ : S̃ ` P . k̃ : α̃ Θ ·X : S̃α̃; Γ ` Q . ∆
Θ;Γ ` def X(x̃k̃) = P in Q . ∆

[Def]

Fig. 6. Typing System

revised [Acc], [Req], [Var], [Def]. All of these changes are improvements and do not
imply any technical difference with respect to [13].

However there is one important addition with respect to the typing system
in [13]: the [Bot]-rule. Without the [Bot]-rule, subject congruence (Lemma 2.9)
does not hold. Take for example process throw k[k′]; inact | inact structural
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congruent to throw k[k′]; inact. We have

` throw k[k′]; inact | inact . k : ![end]; end · k′ : ⊥

but process throw k[k′]; inact is not typable under the same typing [1]. In [2], the
authors fixed the problem by adding the condition β 6= end in the [Thr]-rule. We
believe the solution herein presented offers extra flexibility.

2.4 Subject Reduction and Type Safety

We start with a few auxiliary results; Subject-Reduction is on page 10, and Type
Safety on page 12.

Lemma 2.5 (Weakening Lemma) Let Θ;Γ ` P . ∆.

(i) If X 6∈ dom(Θ), then Θ, X : S̃α̃; Γ ` P . ∆.

(ii) If a 6∈ dom(Γ), then Θ;Γ, a : S ` P . ∆.

(iii) If k 6∈ dom(∆) and α = ⊥ or α = end, then Θ;Γ ` P . ∆ · k : α.

Proof. A simple induction on the derivation tree of each sequent. For iii, we note
that in [Inact] and [Var], ∆ contains only end.

Lemma 2.6 (Strengthening Lemma) Let Θ;Γ ` P . ∆.

(i) If X 6∈ fpv(P ), then Θ \X; Γ ` P . ∆.

(ii) If a 6∈ fn(P ), then Θ;Γ \ a ` P . ∆.

(iii) If k 6∈ fc(P ), then Θ;Γ ` P . ∆ \ k.

Proof. Standard.

Lemma 2.7 (Channel Lemma) (i) If Θ;Γ ` P . ∆ · k : α and k 6∈ fc(P ), then
α = ⊥, end.

(ii) If Θ;Γ ` P . ∆ and k ∈ fc(P ), then k ∈ dom(∆).

Proof. A simple induction on the derivation tree for each sequent.

We omit the standard renaming properties of variables and channels, but present
the Substitution Lemma for names. Note that we do not require a substitution
lemma for channels or process variables, for they are not communicated.

Lemma 2.8 (Substitution Lemma) If Θ;Γ, x : S ` P . ∆ and Θ;Γ ` c : S, then
Θ;Γ ` P [c/x] . ∆

Proof. Standard.

We write ∆ ≺ ∆′ if we obtain ∆′ from ∆ by replacing k1 : end, ..., kn : end
(n ≥ 0) in ∆ by k1 : ⊥, ..., kn : ⊥. If ∆ ≺ ∆′, we can obtain ∆′ from ∆ by applying
the [Bot]-rule zero or more times.

Lemma 2.9 (Subject Congruence) If Θ;Γ ` P . ∆ and P ≡ Q, then Θ;Γ `
Q . ∆.
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Proof. Case P | inact ≡ P . We show that if Θ; Γ ` P | inact . ∆, then
Θ; Γ ` P . ∆. Suppose

Θ; Γ ` P . ∆1 and Θ; Γ ` inact . ∆2.

with ∆1 ◦∆2 = ∆. Note that ∆2 only contains end or ⊥, hence we can set: ∆1 =
∆′

1◦{k̃ : ˜end} and ∆2 = ∆′
2·{k̃ : ˜end} with ∆′

1◦∆′
2 = ∆′

1·∆′
2 and ∆ = ∆′

1·∆′
2·{k̃ : ⊥̃}.

Then by the [Bot]-rule, we have:

Θ; Γ ` P . ∆′
1 · {k̃ : ⊥̃}

Notice that, given the form of ∆ above, we know that dom(∆′
2)∩dom(∆′

1 ·{k̃ : ⊥}) =
∅. Hence by applying Weakening, we have:

Θ; Γ ` P . ∆′
1 ·∆′

2 · {k̃ : ⊥̃}

as required.
For the other direction, we set ∆ = ∅ in [Inact].
Case P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R). By commutativity and
associativity of �.
Case (νu)P | Q ≡ (νu)(P | Q) if u 6∈ fu(Q). The case when u is a name is standard.
Suppose u is channel k and assume Θ; Γ ` (νk)(P | Q) . ∆. We have

Θ; Γ ` P . ∆′
1 Θ;Γ ` Q . ∆′

2

Θ;Γ ` P | Q . ∆′ · k : ⊥

with ∆′ ·k : ⊥ = ∆′
1 ◦∆′

2, and ∆′ ≺ ∆ by [Bot]. First notice that k can be in either
∆′

i or in both. The interesting case is when it occurs in both; from Lemma 2.7(i)
and the fact that k 6∈ fc(Q) we know that ∆′

1 = ∆1 · k : end and ∆′
2 = ∆2 · k : end.

Then, by applying the [Bot]-rule to k in P , we have Θ; Γ ` P . ∆1 · k : ⊥, and by
applying [CRes] we obtain Θ; Γ ` (νk)P .∆1. On the other hand, by Strengthening,
we have Θ; Γ ` Q.∆2. Then, the application of [Conc] yields Θ; Γ ` (νk)P | Q.∆′.
Then by applying the [Bot]-rule, we obtain Θ; Γ ` (νk)P | Q . ∆, as required. The
other direction is easy.
Case (νu)inact ≡ inact. Standard by Weakening and Strengthening.
Case def D in inact ≡ inact. Similar to the first case using Weakening and
Strengthening.
Case (νu)def D in P ≡ def D in (νu)P if u 6∈ fu(D). Similar to the scope opening
case using Weakening and Strengthening.
Case (def D in P ) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅. Similar with
the scope opening case using Weakening and Strengthening.

Theorem 2.10 (Subject Reduction) If Θ;Γ ` P . ∆ and P →∗ Q, then Θ;Γ `
Q . ∆.

Proof. We assume that

Γ ` e . S and e ↓ c implies Γ ` c . S (3)

10



www.manaraa.com

Yoshida and Vasconcelos

and prove the result by induction on the last rule applied.
Case [Link] (accept a(k) in P1) | (request a(k) in P2) → (νk)(P1 | P2). Suppose
Θ; Γ ` (accept a(k) in P1) | (request a(k) in P2) . ∆. Then the assumption is
derived from:

Γ ` a . 〈α, α〉 Θ;Γ ` P1 . ∆′
1 · k : α

Θ;Γ ` accept a(k) in P1 . ∆′
1

and
Γ ` a . 〈α, α〉 Θ;Γ ` P2 . ∆′

2 · k : α

Θ;Γ ` request a(k) in P2 . ∆′
2

and [Bot] with ∆′
i ≺ ∆i, [Conc] with ∆1 ◦∆2 = ∆′, and [Bot] with ∆′ ≺ ∆. Then

applying [Bot] to P1 and P2, we have:

Θ; Γ ` P1 . ∆′
1 · k : α

Θ;Γ ` P1 . ∆1 · k : α
and

Θ; Γ ` P2 . ∆′
2 · k : α

Θ;Γ ` P2 . ∆2 · k : α

Then we apply [Conc] to P1 and P2 to obtain:

Θ; Γ ` P1 . ∆1 · k : α Θ;Γ ` P2 . ∆2 · k : α

Θ;Γ ` P1 | P2 . ∆′ · k : ⊥

Now applying [CRes] and [Bot], we are done.
Case [Com] (k![ẽ];P1) | (k?(x̃) in P2) → P1 | P2[c̃/x̃] with ẽ ↓ c̃. The assumption
is derived from:

Γ ` ẽ . S̃ Θ;Γ ` P1 . ∆′
1 · k : α

Θ;Γ ` k![ẽ];P1 . ∆′
1 · k : ![S̃];α

and
Θ; Γ · x̃ : S̃ ` P2 . ∆′

2 · k : α

Θ;Γ ` k?(x̃) in P2 . ∆′
2 · k : ?[S̃];α

and [Bot] with ∆′
i ≺ ∆i, [Conc] with ∆1 ◦∆2 · k : ⊥ = ∆′, and [Bot] with ∆′ ≺ ∆.

Then by (3), we know Γ ` c̃ . S̃. By applying Substitution Lemma, we have:

Θ; Γ ` P2[c̃/x̃] . ∆′
2 · k : α

Now the application of [Bot] and [Conc] to P1 and P2[c̃/x̃], then by [Bot], we
complete this case.
Case [Label] (k � li;P1) | (k � {l1 : P1[] · · · []ln : Pn}) → P | Pi (1 ≤ i ≤ n).
Similar to the above case.
Case [Pass] (throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2. The assumption
is derived from:

Θ; Γ ` P1 . ∆′
1 · k : β

Θ;Γ ` throw k[k′];P1 . ∆′
1 · k : ![α];β · k′ : α

and
Θ; Γ ` P2 . ∆′

2 · k : β · k′ : α

Θ;Γ ` catch k(k′) in P2 . ∆′
2 · k : ?[α];β

and [Bot] with ∆′
i ≺ ∆i, [Conc] with ∆1 ◦ ∆2 · k : ⊥ · k′ : α = ∆′ and [Bot] with

∆′ ≺ ∆. Note that k, k′ 6∈ dom(∆1,∆2,∆′
1,∆

′
2). By applying [Bot], [Conc] to P1

and P2, and then by [Bot], we obtain the required result.
Case [If1],[If2]. Trivial.
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Case [Def] def D in (X[ẽk̃] | Q) → def D in (P [c̃/x̃] | Q) with ẽ ↓ c̃ and
X(x̃k̃) = P ∈ D. Simplifying the recursive definition to the single case, we set
D = (X(x̃k̃) = P ). Then the assumption is derived from:

Θ·X : S̃α̃; Γ·x̃ : S̃ ` P . k̃ : α̃

Θ·X : S̃α̃; Γ ` X[ẽk̃] . ∆′
1 ·k̃ : α̃ Θ·X : S̃α̃; Γ ` Q . ∆′

2

Θ·X : S̃α̃; Γ ` X[ẽk̃] | Q . ∆′′ ·k̃ : α̃ ∆′′ ≺ ∆′

Θ;Γ ` def X(x̃k̃) = P in (X[ẽk̃] | Q) . ∆′ ·k̃ : α̃

with ∆0 = ∆′ · k̃ : α̃, ∆′ = ∆′
1 ◦∆′

2 and ∆0 ≺ ∆. Note that ∆′
1 contains only ⊥ or

end. Then applying Substitution Lemma to P , we have:

Θ ·X : S̃α̃; Γ ` P [c̃/x̃] . k̃ : α̃

Notice that k̃∩dom(∆′
1) = ∅, since (∆′

1 ◦∆′
2) · k̃ : α̃ is defined. Then by Weakening,

we have:
Θ ·X : S̃α̃; Γ ` P [c̃/x̃] . ∆′

1 · k̃ : α̃

Now by [Conc], we have

Θ ·X : S̃α̃; Γ ` P [c̃/x̃] | Q . ∆′′ · k̃ : α̃

Finally by [Bot] (∆′′ ≺ ∆′), then by [Def], we obtain:

Θ; Γ ` def X(x̃k̃) = P in (P [c̃/x̃] | Q) . ∆′ · k̃ : α̃

Then we can apply [Bot] to obtain ∆, as desired.
Case [Str]. By Subject-Congruence.

To formalise Type Safety, we need the following notions. A k-process is a process
prefixed by subject k (such as k![ẽ];P and catch k(k′) in P ). Next, a k-redex is the
parallel composition of two k-processes, i.e. either of form (k![ẽ];P | k?(x̃) in Q),
(k� l;P | k�{l1 : Q1[] · · · []ln : Qn}), or (throw k[k′];P | catch k(k′′) in Q). Then
P is an error if P ≡ (νũ)(def D in (Q | R)) where Q is, for some k, the parallel
composition of either two k-processes that do not form a k-redex, or three or more
k-processes. We then have:

Theorem 2.11 (Type Safety) A typable program never reduces to an error.

Proof. By Subject Reduction it suffices to show that typable programs are not
errors. The proof is by reductio ad absurdum, assuming error processes typable.
Suppose that Θ; Γ ` def D in (νũ)(P | Q) . ∆. Analysing the derivation tree for
the process, we conclude that Θ; Γ ` P . ∆′, for some ∆′. We now analyse the two
classes of error processes.

When P = P1 | P2 is the parallel composition of two k-processes that do not
form a redex, there are several cases to consider. They are all alike; take for example
the pair label-select/throw. Applying [Conc] on P , we have Θ; Γ ` P1 . ∆′

1 and
Θ; Γ ` P2 . ∆′

2 with ∆′ ≺ ∆′
1 ◦ ∆′

2. Applying [Sel] on P1 and [Thr] on P2 we
conclude that k : ⊕{l1 : α1, . . . , ln : αn} ∈ ∆′

1 and k : ![α];β ∈ ∆′
2. But then ∆′

1 ◦∆′
2

is not defined, hence def D in (νũ)(P | Q) is not typable.

12
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When P is the parallel composition of three or more k-processes, we concentrate
on the case of three processes, for the remaining cases reduce to this. So let P =
(P1 | P2) | P3. Applying [Conc], we know that Θ; Γ ` P1 | P2 . Σ and Θ; Γ ` P3 . Σ′

with ∆′ ≺ Σ ◦ Σ′. If P1 | P2 is not a k-redex, we use the case above. Otherwise, it
must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(ii), we know that k ∈ dom(Σ′),
thus Σ ◦ Σ′ is not defined, hence def D in (νũ)(P | Q) is not typable.

3 A More Liberal Session Passing Style

Rule [Pass] in the original ESOP’98 system

(throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2

does not allow the transmission of an arbitrary channel. In most situations a process
catch k(k′′) in P2 can be alpha-converted ahead of communication 3 so that the
bound variable k′′ syntactically matches the free variable k′ in the throw process.
The exception happens exactly when k′ is free in P2: alpha-conversion becomes
impossible (for it would capture free variable k′), and communication cannot occur.

A more liberal rule would allow the transmission of an arbitrary channel, im-
plying a substitution on the client side.

(throw k[k′];P1) | (catch k(k′′) in P2) → P1 | P2[k′/k′′]

Unfortunately this rule breaks Subject Reduction (Theorem 2.10). A counter-
example is a process which, possessing one end of a channel, receives the second
end. The process:

throw k[k′] | catch k(k′′) in k′′?(y) in k′![1] (4)

is typable under typing k : ⊥, k′ : ⊥, but reduces to process

k′?(x) in k′![1]

which is not typable under the same typing [7].
One might think that the simplest solution of the above problem is to add

the side condition k′ 6∈ fc(P2) to the above rule proposal. This reduction rule,
however, implies that the condition of free channels is checked at runtime, which
contradicts the aim of static type checking to preserve Subject Reduction. The same
sort of situation occurs in the ESOP’98 system, where, in presence of a process
throw k[k′];P1 | catch k(k′′) in P2, the runtime system has to check whether
k′ ∈ fc(P2) in order to alpha-convert the catch-process before applying rule [Pass]
above.

A different alternative would be to type the contractum with a different typing.
In the above case and for the catch process in the redex, we have k′ : ![nat]; end,
and k′′ : ?[nat]; end. In the contractum, channels k′ and k′′ are aliased and it is not
obvious how to build, from the premises, the correct type ?[nat]; ![nat]; end for k′.

3 Cf. Paragraph Relationship with the Rewriting Rules of the π-Calculus in Section 2.1.
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A solution, due to Gay and Hole [12], explicitly distinguishes between the two
ends of a channel. For a channel κ, its two ends are denoted κ+ and κ−. Channels
are now runtime entities (they are not supposed to occur in programs) created by
rule [Link], which becomes:

(accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] | P2[κ−/x])

Rules that synchronise two processes on a given channel are updated so that
each process explicitly mentions one of the ends. For example rule [Thr] becomes:

(throw κp[k′];P1) | (catch κp(x) in P2) → P1 | P2[k′/x]

where p denotes one end (one polarity) of κ and p the other.
A further change allows a typing ∆ to contain one type for κ+ and a different

type (not necessarily dual) for κ−. Parallel composition juxtaposes the typings of
the two operands (provided they have disjoint domains), rather than composing
using ◦ (cf. Definition 2.4).

Θ; Γ ` P . ∆ Θ; Γ ` Q . ∆′

Θ;Γ ` P | Q . ∆ ·∆′ [Conc]

An immediate consequence of the new rule is that we do not need the bottom ⊥ type
anymore, or the notions of typing compatibility and composition. One the other
hand, the new rule for channel restriction requires the two ends of the channel to
be of dual types.

Θ; Γ ` P . ∆ · κ+ : α · κ− : α

Θ;Γ ` (νκ)P . ∆
[CRes]

Notice that the original rule (in Figure 6) requires an entry k : ⊥ in typing ∆.
To understand how the new system works, consider process (4) refined into the

new syntax:
throw κ+[κ′+] | catch κ−(x) in x?(y) in κ′−![1]

The process is typable under the typing κ+ : ![α]; end, κ− : ?[α]; end, κ′+ : α, κ′− : α

where α is the type ?[nat]; end. It now reduces to

κ′+?(x) in κ′−![1]

which is still typable (this time under typing κ′+ : α, κ′− : α).
Clearly, typability over arbitrary channel environments is not closed under re-

duction any more. For example, the process

κ+![true] | κ−?(x) in κ′−![x + 1] (5)

is typable under typing κ+ : ![bool]; end, κ− : ?[nat]; end, κ′− : ![nat]; end, but reduces
to

κ′−![true + 1]
which is not typable. The last step is then to consider, for Subject Reduction
and Type Safety purposes, only typings where the two ends of a channel are of dual
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types. We call such typings balanced [12]. This restriction rules out the above typing
(since ![bool]; end is not dual to ?[nat]; end), hence process (5) is not guaranteed to
preserve typability under reduction or to be type safe.

3.1 Syntax and Operational Semantics

With respect to the syntax in Figure 1, we let κ, rather than k, range over channels.
Identifier k now stands for polarised channels (κ+, κ−) or names (a, x). As such k

cannot occur in a binding position anymore; four process constructors need to be
updated: accept, request, catch, and def. The grammar of the language is given
by the rules in Figure 1, replacing the productions for accept, request, catch, and
def by the ones below.

P ::= request a(x) in P session request
| accept a(x) in P session acceptance
| catch k(x) in P channel reception
| . . .

D ::= X1(x̃1ỹ1) = P1 and · · · and Xn(x̃nỹn) = Pn declaration for recursion
k ::= x | κp channel variables and values
p ::= + | − channel polarities

Duality on polarities is defined as + = − and − = +. Variable x is now bound in
any of request a(x) in P, accept a(x) in P, catch k(x) in P , and the variables in
x̃ỹ become bound in X(x̃ỹ) = P , so that, in contrast with the system in Section 2.1,
we have three more name binders, and only (νκ)P remains as a binder for channels.

The new reduction relation adapts the rules that directly work with channels.
Reduction is given by replacing, in Figure 3, rules [Link], [Com], [Label], [Pass],
and [Def] by the rules below. Structural congruence (Figure 2) remains unchanged.

(accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] | P2[κ−/x]) [Link]

(κp![ẽ];P1) | (κp?(x̃) in P2) → P1 | P2[c̃/x̃] (ẽ ↓ c̃) [Com]

(κp � li;P ) | (κp � {l1 : P1[] · · · []ln : Pn}) → P | Pi (1 ≤ i ≤ n) [Label]

(throw κp[κ′q];P1) | (catch κp(x) in P2) → P1 | P2[κ′q/x] [Pass]
def D in (X[ẽκ̃p] | Q) → def D in (P [c̃/x̃][κ̃p/ỹ] | Q) (ẽ ↓ c̃, X(x̃ỹ) = P ∈ D)

[Def]

3.2 Type Discipline

Types in Figure 4 remain unchanged, except that bottom ⊥ is no longer needed.
Typings still feature entries of the form k : α, only that k can now be a name x, or
a polarised channel κ+ or κ−. The type system needs adjustments in rules [Acc],
[Req], [Cat] and [Def] due to the change in syntax. Also, the absence of rule [Bot]
is compensated by a new rule [CRes’] for (νκ)P . The main change however happens
in rules [Conc] and [CRes]. The new type system is given by replacing, in Figure 6,
rules [Acc], [Req], [Cat], [Def], [Conc], [CRes], and [Bot] by the rules below.
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Γ ` a : 〈α, α〉 Θ;Γ ` P . ∆ · x : α

Θ;Γ ` accept a(x) in P . ∆
[Acc]

Γ ` a : 〈α, α〉 Θ;Γ ` P . ∆ · x : α

Θ;Γ ` request a(x) in P . ∆
[Req]

Θ; Γ ` P . ∆ · k : β · x : α

Θ;Γ ` catch k(x) in P . ∆ · k : ?[α];β
[Cat]

Θ ·X : S̃α̃; Γ · x̃ : S̃ ` P . ỹ : α̃ Θ ·X : S̃α̃; Γ ` Q . ∆
Θ;Γ ` def X(x̃ỹ) = P in Q . ∆

[Def]

Θ; Γ ` P . ∆ Θ; Γ ` Q . ∆′

Θ;Γ ` P | Q . ∆ ·∆′ [Conc]

Θ; Γ ` P . ∆ · κ+ : α · κ− : α

Θ;Γ ` (νκ)P . ∆
[CRes]

Θ; Γ ` P . ∆ κ not in ∆
Θ;Γ ` (νκ)P . ∆

[CRes’]

In rule [Var], Figure 6, typing k1 . . . kn : α1 . . . αn is understood as k1 : α1 · . . . ·
kn : αn, defined only when the ki are pairwise distinct. This restriction is crucial in
controlling channel aliasing during reduction via the [Def] rule, now that a substi-
tution is performed. Suppose that we judge as valid a sequent of the form X : SS `
X[kk] . k : S. Then, taking for D the process definition X(k′k′′) = k′![1].k′′![2],
process def D in X[kk] would be typable under typing k : !nat.end, but reduces to
process def D in k![1].k![2] which is not typable under the same typing.

3.3 Subject Reduction and Type Safety

The absence of typing compatibility (in rule [Conc]) is compensated by balanced
typings. We say that a typing ∆ is balanced if whenever κ+ : α, κ− : β ∈ ∆, then
α = β [12]. Subject-Reduction (Theorem 3.3) and Type Safety (Theorem 3.4) hold
only in presence of balanced typings.

We rely on the Weakening, Strengthening, Channel and Substitution Lemmas of
Section 2.4, adapted to the syntax and typing system of this section. Since we now
replace channels in processes, we need a Channel Replacement Lemma, a result not
needed for the ESOP’98 system [13]. The proofs below are adapted from those in
references [12,23], except that our scope extrusion rule (in Figure 2) is more general
than that of [12].

Lemma 3.1 (Channel Replacement) If Θ;Γ ` P.∆·x : α, then Θ;Γ ` P [κp/x].
∆ · κp : α.

Proof. A straightforward induction on the derivation tree for P .

Lemma 3.2 (Subject Congruence) If Θ;Γ ` P . ∆ and P ≡ Q, then Θ;Γ `
Q . ∆.

Proof. The proof follows the pattern of that of Lemma 2.9, albeit slightly simplified
by the absence of the non-structural [Bot] rule. We detail the two most interesting
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cases.
Case P | inact ≡ P . We show that if Θ; Γ ` P | inact . ∆, then Θ; Γ ` P . ∆.
Suppose that

Θ; Γ ` P . ∆1 and Θ; Γ ` inact . ∆2

with ∆1 ·∆2 = ∆. Note that ∆2 only contains end. Applying Weakening to P , we
have Θ; Γ ` P . ∆1 ·∆2 as required.
For the other direction we start with derivation Θ; Γ ` inact . ∅, and then apply
rule [Conc].
Case (νu)(P | Q) ≡ (νu)P | Q if u 6∈ fu(Q). The case when u is a name is standard.
Suppose u is channel k and assume Θ; Γ ` (νκ)(P | Q) .∆. We consider the [CRes]
case (the [CRes’] case is simpler):

Θ; Γ ` P . ∆1 Θ;Γ ` Q . ∆2

Θ;Γ ` P | Q . ∆ · κp : α · κp : α

First notice that κp and κp can be both in either ∆i or one in each. When they
are both in ∆1 we conclude the case by applying [CRes] and [Conc]. When they
are both in ∆2, by the Channel Lemma we know that the types for κp and κp in
∆2 are end. We conclude the case by applying Strengthening twice to Q before
applying [CRes’] and [Conc]. Finally, when κp is in ∆′

1 and κp in ∆′
2, we apply

Strengthening to Q and Weakening to P , before applying [CRes] and [Conc].
The other direction is simpler.

Theorem 3.3 (Subject Reduction) If Θ;Γ ` P . ∆ with ∆ balanced and P →∗

Q, then Θ;Γ ` Q . ∆′ and ∆′ balanced.

Proof. The proof is similar to that of Theorem 2.10. We concentrate on the four
new reduction rules, and reuse the remaining cases.
Case [Link] (accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] |
P2[κ−/x]). The assumption is derived from

Θ;Γ ` P1 . ∆ · x : α

Θ;Γ, a : 〈α, α〉 ` accept a(x) in P1 . ∆

from
Θ;Γ ` P2 . ∆ · x : α

Θ;Γ, a : 〈α, α〉 ` request a(x) in P2 . ∆
and from [Conc] with ∆1 · ∆2 = ∆. Applying the Channel Replacement Lemma
to P1 and also to P2, we have Θ; Γ ` P1[κ+/x] . ∆ · κ+ : α, and Θ; Γ ` P2[κ−/x] .

∆ · κ− : α. The case concludes with the application of rule [Conc] followed by rule
[CRes].
Case [Com] (κp![ẽ];P1) | (κp?(x̃) in P2) → P1 | P2[c̃/x̃]. The assumption is
derived from:

Γ ` ẽ . S̃ Θ;Γ ` P . ∆1 · κp : α

Θ;Γ ` k![ẽ];P1 . ∆1 · κp : ![S̃];α
Θ;Γ · x̃ : S̃ ` P2 . ∆2 · κp : α

Θ;Γ ` k?(x̃) in P2 . ∆2 · κp : ?[S̃];α

and [Conc] with ∆1 · κp : ![S̃];α ·∆2 · κp : ?[S̃];α = ∆. Notice that the types for κp

and for κp are dual since ∆ is balanced by hypothesis. Then by (3), page 10, we
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know Γ ` c̃ . S̃. We conclude the case by applying Substitution Lemma to P2, and
the [Conc]-rule to P1 and to P2[c̃/x̃].
Case [Label]. Similar to the homonymous case in the proof of Theorem 2.10,
relying, as above, on the fact that ∆ is balanced.
Case [Pass] (throw κp[κ′q];P1) | (catch κp(x) in P2) → P1 | P2[κ′q/x]. The
assumption is derived from

Θ;Γ ` P1 . ∆1 · κp : β

Θ;Γ ` throw κp[κ′q];P1 . ∆1 · κp : ![α];β · κ′q : α

from
Θ;Γ ` P2 . ∆2 · κp : β · x : α

Θ;Γ ` catch κp(x) in P2 . ∆2 · κp : ?[α];β

and from [Conc] with ∆1 · κp : ![α];β · κ′q : α ·∆2 · κp : ?[α];β = ∆. Once again, the
types for κp and for κp are dual since ∆ is balanced by hypothesis. Applying the
Channel Replacement Lemma to P2, we obtain

Θ; Γ ` P2[κ′q/x] . ∆2 · κp : β · κ′q : α

By applying [Conc] to P1 and P2[κ′q/x], we obtain the required result.
Case [Def] (def D in (X[ẽκ̃p] | Q) → def D in (P [c̃/x̃][κ̃p/ỹ] | Q) with ẽ ↓ c̃ and
X(x̃ỹ) = P ∈ D. Similar to the homonymous case in the proof of Theorem 2.10,
with the difference that, when building the derivation tree for the contractum, after
obtaining

Θ ·X : S̃α̃; Γ ` P [c̃/x̃] . ỹ : α̃

by the application of the Substitution Lemma, we apply Channel replacement to
obtain

Θ ·X : S̃α̃; Γ ` P [c̃/x̃][κ̃p/ỹ] . κ̃p : α̃.

Theorem 3.4 (Type Safety) A program typable under a balanced channel envi-
ronment never reduces to an error.

Proof. The proof follows the pattern of that of Theorem 2.11, only that the contra-
diction happens not because typing composition (∆◦∆′) is not defined, but because
the resulting typing (∆ ·∆′) is not balanced.

4 Conclusion

The study of session typing system is now widespread due to the need for structured
communications in various scenarios in distributed applications. They have been
studied, at the research level, for the π-calculus [2,11,12,13,17,20,23], Ambients [6],
CORBA interfaces [21], multi-threaded functional languages [23,24,15], Web De-
scription Languages [3,4,14], and distributed [8] and multi-threaded Java [7] and,
at the industry level, WC3-CDL [5,25] and pi4Tech [16].

In the presence of higher-order session communication, session instantiation dy-
namically changes structures of sessions during execution, so that it becomes non-
trivial to preserve typability. Unfortunately the authors of previous session typing
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systems did not realise (or even forgot about) the key point of rule [Pass], so that
some of the systems published after [13] fail to satisfy the Subject Reduction Theo-
rem. As discussed in this report, the subtlety of the type preservation is related to a
treatment of communication channels in the operational semantics of the π-calculus:
aliasing of channels, structured safe communication, types, new name creation and
the α-conversion are tightly related with this issue.

As a future work, it would be nice to investigate the relationship uniformly using
rewriting frameworks [9,10].
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[17] Ostrovský, K., “On modelling and analysing concurrent systems,” Ph.D. thesis, Chalmers University
of Technology (2006).

[18] Pierce, B. C., “Types and Programming Languages,” MIT Press, 2002.

[19] Sangiorgi, D., π-calculus, internal mobility and agent-passing calculi, Theoretical Computer Science
167 (1996), pp. 235–274.

[20] Takeuchi, K., K. Honda and M. Kubo, An Interaction-based Language and its Typing System, in:
PARLE’94, LNCS 817 (1994), pp. 398–413.

[21] Vallecillo, A., V. T. Vasconcelos and A. Ravara, Typing the behavior of objects and components using
session types, Fundamenta Informaticæ73 (2006).

[22] Vasconcelos, V. T., Recursive types in a calculus of objects, Transactions of Information Processing
Society of Japan 35 (1994), pp. 1828–1836.

[23] Vasconcelos, V. T., S. Gay and A. Ravara, Typechecking a multithreaded functional language with
session types, Theoretical Computer Science (2006), to appear.

[24] Vasconcelos, V. T., A. Ravara and S. Gay, Session Types for Functional Multithreading, in:
CONCUR’04, LNCS 3170 (2004), pp. 497–511.

[25] Web Services Choreography Working Group, Web Services Choreography Description Language, http:
//www.w3.org/2002/ws/chor/.

20

http://www.w3.org/2002/ws/chor/
http://www.w3.org/2002/ws/chor/

	Introduction
	The Honda-Vasconcelos-Kubo Session Typing System
	Syntax and Operational Semantics
	Type Discipline
	Changes from the ESOP'98 system
	Subject Reduction and Type Safety

	A More Liberal Session Passing Style
	Syntax and Operational Semantics
	Type Discipline
	Subject Reduction and Type Safety

	Conclusion
	References

